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The description and group properties of linear graphs 
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Received 8 July 1975 

Abstract. A new method for the identification and ordering of linear graphs is described. 
The method pays particular attention to the group properties of graphs and is easy to adapt 
for use with electronic computers. 

1. Introduction 

In this paper a method is described for the ordering and identification of linear graphs. 
As an integral part of the methqd, representations of the point group and bond group 
of any graph are produced. Although the nomenclature of linear graphs is a general 
problem in graph theory, we have approached this study from the fact that graphs 
occur in the investigation of many-body systems by the method of exact series expansion 
(Uhlenbeck and Ford 1962, Sykes et a1 1966, Domb and Green 1974, Sykes et a1 1974). 
The problem of graph identification arises in the method of exact series expansion in 
the following way. Each graph represents a contribution to a series expansion of some 
quantity of physical interest. Each contribution is a set of numbers which are associated 
with the graph. Some of these numbers vary from problem to problem whereas others 
are invariant. It is convenient to calculate the invariant quantities separately and 
store them for use with a variety of problems ; that is, one creates a graph library. It is 
obvious that to retrieve the numbers from the library, one requires an unambiguous 
description of each entry. Some of these graph libraries are quite large, containing 
several tens of thousands of entries. Any practicable method of handling such data 
must rely on electronic computers. 

There are several methods in existence which treat the problem of identification 
of graphs. The method with the widest appeal is to draw a diagram of each graph (eg 
Harary 1969, Uhlenbeck and Ford 1962). Though vivid, this method is cumbersome 
and unsuited to electronic computers. 

For many physical applications, particularly problems for which it is natural to 
classify graphs by their number of edges, it is advantageous to consider the identification 
problem in two parts First, one identifies the graph topology and second the realization 
of the topology. If one defines the valence of a vertex of a linear graph as the number 
of bonds incident at the vertex, one may define topology and realization as follows. 
A topology is a collection of vertices and bridges (bonds) with the property that no 
vertex is of valence 2. In topologies, loops and multiple bridges are allowed. A realiza- 
tion is obtained from the topology by inserting vertices of valence 2 in the bridges of 
the topology. A realization is a linear graph. Non-isomorphic realizations of the same 
topology are said to be homeomorphs. The concept of topology is useful in situations 
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where graphs are grouped by the number of edges they contain and where one is 
interested in properties which depend only on the basic topology of the graph. 

An early identification method assigned an arbitrary name to each topology and 
associated with each topology a set of rules whereby the realizations could be identified 
(Sykes et a1 1966, Essam and Sykes 1966). It is very difficult to use this method with 
computers but the names of the topologies are still used in manual or informal work. 
Nagel (1966) has proposed a system of nomenclature for graph topologies which has 
been extensively used on electronic computers by Heap (1967, 1969). The scheme to 
be described bears several points of similarity to that of Nagel and Heap. However, 
the method we have constructed is more direct and adaptable to a variety of situations. 
Furthermore, identification of the realizations is easily included and the symmetry 
properties of topologies and realizations are investigated in detail. 

We shall first give a formal description of the method, postponing examples to 
appendix 1. A few interesting points about the application to electronic computers are 
given in appendix 2. 

2. Method 

The problem of defining a unique description of a linear graph is solved by giving a 
unique or canonical description to the graph topology by a method which constructs 
a representation of the bridge group of the topology. Any realization can then be 
uniquely described by using the bridge group of the topology. The realization is 
represented by the set of bridge lengths, where the length of a bridge is the number of 
edges it contains. We describe first the canonical description of a topology. 

The v vertices and the b bridges of the topology are arbitrarily labelled by the integers 
{1,2,. . . , U }  and {1,2,. . . , b} respectively. This description will be called the initial 
description and it can be represented by the set of b number pairs 

( ( X l l ? x 1 2 ) ?  (xZ1,x22),."~(xbl~xb2))~ 

The elements xil and xi2 of the ith pair represent the vertex labels of the vertices joined 
by the bridge labelled i. The elements of each pair are ordered so that xil < xi*. 
A permutation of b ordered pairs of integers with this form will be called a b2 tuple. 
(Each b2 tuple is a linear representation of the incidence matrix of the topology.) 
A vertex tuple X is a permutation of the first U positive integers. Associated with the 
initial description are the vertex tuple (1,2,. . . , U )  and the bridge tuple (1,2,, . , , b). 

It is convenient at this stage to define an ordering relation between sets. If 

c = { C l ,  c2, * .  , c,} and D = { d l , d 2 , . . * , d n )  

where c, and d, (1 < i < n) are integers, then C < D (C precedes D) (i) if c1 < d,,  or 
(ii) if c, -= d, when i E  {2,3,. . . , n - l }  and c j  = d j  for all j~ {1,2,. . , , i-l}, or (iii) if 
c, < d, when c j  = d j  for all j E { 1,2,. . . , n - l}. This definition is readily extended to 
b2 tuples as follows. If 

C = ( ( ~ 1 1 ,  c12), ( ~ 2  1 9 cz z), . . * 9 (cn19 cn2) )  

and 

D = ((dl1 > d1t)i (d2 1 9 ~zz), . . ., ( 4 1  7 dn2)) 

where ci j  and d i j  (1 < i < n, 1 < j < 2) are integers, then C < D (i) if c l l  < d , ,  (or if 
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c l1  = d l l , c 1 2  < d12),or(ii)ifcil < d,,(orifc,, = dil ,ci2 < d, , )wheni~{2,3 ,  . . . ,  n - I }  
and cjl = d j l ,  cj2 = d j ,  for all j~ {1,2,. . . , i -  l}, or (iii) if c,, < d,, (or if cnl = d,,, 
c,, < dn2)  when cjl = d j ,  and c jz  = d j ,  for all j E {1,2, ,  . . , n-  11.  In both cases, if 
C .< D and D < C then C and D are identical, written C = D. 

The initial description of the topology is arbitrary. Corresponding to each bridge 
tuple is a permutation of the b number pairs of the initial description. We obtain therefore 
a class of b2 tuples containing b !  members. The members of this class are ordered so 
that B ,  < B ,  < B ,  . . , < Bbl. It will be found that the ordering divides the class of 
b2 tuples into subclasses gk all of whose members are identical. Each subclass contains 
the same number S2 of elements which is the order of the multibridge group of the 
topology. The bridge tuples associated with the b2 tuples are also grouped in classes 
%k to correspond with the g k .  Each Yk is a representation of the multibridge group of 
the topology. This group accounts for the symmetry elements due to multiple bridges 
between two vertices. The subclasses gk are ordered so that if C E gk and D E g, and 
C < D then k < 1. If  BE^, then B is known as a minimum description. 

The minimum description obtained above was found from the initial vertex labelling 
corresponding to the vertex tuple (1 ,2 , .  . . , U ) .  There are U !  ways of labelling the vertices 
of the topology. Each labelling is described by a vertex tuple X i  (1 < i < U!). Corres- 
ponding to each X i  we may find a minimum description Bi and an associated representa- 
tion ??li of the multibridge group. It will be found that the class of minimum descriptions 
can be divided into subclasses %k whose members are identical. The %k are ordered so 
that if C E %k and D E %, and k < 1 then C .< D. Each subclass %k contains the same 
number of elements S ,  which is the order of the uertex group of the topology. Associated 
with each Wk is a class of vertex tuples fi?k = {Xk,,, . . . , x k , s , }  and a class of bridge tuples 
3?k,i is associated with each xk.i. If B E %', then B is the canonical description of the 
topology. The class of vertex tuples &' = Xl is a representation of the vertex group 
of the topology and the class of bridge tuples Y = u ~ L  , Zli is a representation of the 
bridge group of the topology. The latter group is of order S , S , .  

As defined above, the classes 2 and Y contain information concerning the initial 
labelling of the topology. They are known as the un-normalized symmetry rules. We 
obtain the normalized symmetry rules &'* and Y* by choosing to represent one member 
of 2 by (1,2, . . . , U )  and one member of Y by (1,2, . . . , b) and renumbering the remaining 
members accordingly. This procedure chooses the identity element for each group. 
The information about the initial description is lost. The binary operation @ for the 
group &'* is easily defined. If X , ,  X, E &'* and 

then 

A similar definition holds concerning %*. We define the group X *  here for completeness 
although it is not used in the subsequent discussion. 

We now use the bridge group Y* to define the canonical description of a realization 
of the topology. A realization of the topology is formed by associating an integer 
weight r j  (1 < j < b)  with each bridge of the topology. The realizations represent 
linear graphs and the weights represent the number of edges of the graph which constitute 
each bridge of the topology. Each realization may be uniquely described by operating 
with the bridge group B* on the realization description R = ( r l  , r z ,  . . . , rb). Thus if 
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Yi E 9*, for 1 < i < S , S , ,  then the tuples Ri = Yi 0 R are all descriptions of the 
realization. The Rj are ordered so that if j < k then R j  4 R,. The set R I  is then the 
canonical description of the realization. A representation of the symmetry group of the 
realization is given by the class of bridge tuples Yj (1 < j < a) such that Yj 0 R = R, .  
The order (r of this group is the symmetry number of the realization. 

The relation < can be used to order topologies and to order the realizations of a 
topology. The customary order for topologies is based on the scheme of Nagel and 
Heap and is still extensively used. However the realizations of a topology are arranged 
first by the total number of edges and second by the relation <. The ordering of the 
realizations greatly facilitates list searching. 

3. Summary and comments 

We have defined the canonical description of a toplogy as the minimum of all possible 
b2 tuples. The method of finding the canonical description also produces representa- 
tions of the vertex and bridge groups of the topology. The bridge group is used to 
find the canonical description of a realization of the topology. 

The method can be applied directly to linear graphs. The vertices of the graph are 
labelled and the initial b2 tuple is written down. The minimum b2 tuple is then found 
in the manner described above. Each b2 tuple is a representation of the incidence 
matrix of the graph. This gives a different classification of graphs from that already 
described. The extension of this method to digraphs is trivial. The direct method also 
obviates the need to make the polygons a special case. By convention the polygons 
have the toplogy described by the b2 tuple ((1,l)). 

Appendix 1. Example 

Suppose we wish to canonize the topology 

The initial labelling is shown. The initial vertex tuple, bridge tuple and b2 tuple are 

The minimum description with this vertex tuple is ((1,3), (1,3), (1,4), (2,3), (2,4), (2,4), 
(3,4)) and the corresponding representation of the multibridge group is given by the 
four bridge tuples 

(1,2,3,4), (1,2,3,4,5,6,7) and ((1,3), (3,4), (2,3), (2,4), (1,3), (L4L (2,4)) respectively. 

(1,5,6,3,4,7,2) 

(1,5,6,3,7,4,2) 

(5,1,6,3,4,7,2) 

(5,1,6,3,7,4,2) 
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The multibridge group takes account of the symmetry due to the multiple bridges 
between vertices 1 and 3 and between vertices 2 and 4. The order of the group is 4 = 2 !2 ! 

The vertex tuple is now changed to (1,2,4,3) to produce the following labelled 
topology : 

The minimum description is now 

((1,3), (1,4), (1,4), (2,3), (2,3), (2,4), (394)) 
and the multibridge group is represented by 

(6 ,1,5,4,7,3,2)  

(6 ,1 ,5 ,7 ,4,3,2)  

(6 ,5 ,1 ,4 ,7,3,2)  

(6 ,5 ,1 ,7 ,4,3,2) .  
We run through the 24 vertex tuples X to X24 to produce the 24 minimum descriptions 
C1 to C24 shown in table 1.  By inspection the minimum descriptions are identical in 
pairs, eg C, = C,, C, = C,. By ordering the minimum descriptions we see that the 
canonical description of the topology is given by C, , or C,, ; that is, 

((1,2), ( 1 ,  a, (1,3), (1,4), (2,319 (3,4), (374)). 

{(2?4,1,3),  (4,293, U}. 

9 1 . 1  = { ( I ,  5,2939 6,497) 

The vertex group H is represented by the class X, = { X , , ,  X,,}, that is 

Associated with X ,  , and X, ,  are the multibridge groups represented by the following 
classes : 

Tl,, = {(4,7,2,6,3,1,5)  

(1 ,5 ,2 ,3 ,6,7,4)  (4 ,7 ,2 ,6 ,3,5,1)  

(5, 1 ,2 ,3 ,6 ,4 ,7)  (7 ,4 ,2 ,6 ,3,1,5)  

(5 ,1 ,2 ,3 ,6,7,4)}  (7 ,4 ,2 ,6,3,5,  I)}. 
The group Y is represented by T,,, U T,,,. The normalized group H* is represented 
by the class {(1,2,3,4), (2,1,4,3)},  the members of which correspond to the vertex 
labellings 
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Table 1. The 24 vertex tuples and minimum descriptions of the topology 

~ ~~ ~~ 

Vertex tuple Minimum description 

‘15 

‘16 

‘1 7 

Cl ,  

‘19 

C, 0 

respectively. The normalized group 9* is represented by 

corresponding to the bridge labelling shown above. 
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To illustrate the canonical description of a realization, suppose we are given the 
following realizations of the topology ; 

Each realization has three bridges of length 3, three bridges of length 2 and one bridge 
of length 1. Corresponding to the canonical description of the topology we describe 
the realizations by 

R‘” = (3,2, 3,2,3, 1,2) and R‘” = (3,2,3,3,2, 1,2). 

By operating on R“) and R(’) with the group Y* we obtain eight equivalent descriptions 
of each realization, namely 

RI” = (3,2,3,2, 3, 1,2) and R\” = (3,2,3,3,2, 1,2) 

Ri’) = (3,2,3,2, 3,2, 1) R‘,Z’ = (3,2,3,3,2,2,  1) 

Ri” = (2,3,3,2,3, 1,2) Ri’’ = (2,3,3,3,2, 1,2) 

Rk” = (2,3,3,2,3,2, 1) Rk2’ = (2,3,3,3,2,2,  1) 

R p  = (1,2,3,3,2,3,2) R(5’) = (1,2,3,2, 3,3,2) 

R y  = (1,2,3,3,2,2,3) 

R\’) = (2,1,3,3,2,3,2) 

R f )  = (1,2,3,2, 3,2,3) 

R\” = (2, 1 ,3 ,2 ,3 ,3 ,2)  

R(8l) = (2, 1,3,3,2,2,3) R(8’) = (2, 1,3,2,3,2,3).  

The canonical description of (1) is R‘Q) and the canonical description of (2) is R(6’). 
The symmetry number of both these realizations is 1. 

To illustrate the effects of symmetry with respect to realizations, let us consider the 
realization 

The eight equivalent descriptions are 

R\3) = (2,1, 1,2,2,2,2) 

RL3’ = (2, 1, 1,2,2,2,2) 

Ri3) = (1,2, 1,2,2,2,2) 
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Ri3’ = (1,2, 1,2,2,2,2) 

Rk3) = (2,2, 1,2,2,2, 1) 

RL3) = (2,2, 1,2,2, 1,2) 

R\3) = (2,2, 1,2,2,2, 1) 

RL3) = (2,2, 1,2,2, 1,2). 

The canonical description is given by RL3) or Ra). The symmetry group of the realiza- 
tion is represented by the third and fourth members of Y* and the symmetry number 
is 2. 

Appendix 2. Some practical points 

The canonization procedure has been translated into a FORTRAN computer program. 
The program finds the canonical description of any topology and the un-normalized 
bridge and vertex symmetry rules. It calculates the normalized symmetry rules on 
request. This option allows a saving in storage space, though the program is not parti- 
cularly large. It requires approximately 12 K bytes (about 5000 words) on an IBM 360 
machine. The program can be used as a subroutine in more complex programs. Readers 
interested in using the program are asked to contact the author. 

To increase the speed of the program a number of subterfuges have been used. First, 
the innermost cycle of the program is that which finds the minimum description for 
each vertex tuple. If the b2 tuples are considered merely as numbers of order 1’’ where 
A is some base (A > U), then the minimum b2 tuple is the smallest of such numbers. The 
program is written to find the minimum by rearranging the elements of the b2 tuple. 
Thus the need to run through all b! bridge tuples is obviated. However, the multibridge 
symmetry is not included. This is easy to identify and include in the final stage of the 
program. 

It is also very inefficient for the program to scan all U !  vertex tuples. The innermost 
loop is quite substantial and the fewer times it is entered the better. It is possible to 
make very large savings in computer time with a little care. It has been noticed that 
the canonical description of a connected topology has the property that vertex 2 is 
connected to vertex 1, vertex 3 to either 2 or 1, vertex 4 to either 3, 2 or 1 and so on. 
The proof of this statement is straightforward though too lengthy to include here. 
Thus having chosen vertex 1, vertex 2 must be connected to 1 and the choice of vertex 2 
made accordingly. If one chooses vertex 1 intelligently, and there are a number of 
guidelines for one’s choice, the canonical description can be found with ease. For 
example, the program finds the canonical description and the symmetry rules for the 
cube 

which has symmetry number 48, on entering the innermost cycle 96 times. This 
compares with 8 ! = 40 320 possible vertex tuples. An additional logical path has been 
included in the program to take care of disconnected topologies. 
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